Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2280802

ABSTRACT

Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Animals , Cattle , Coronavirus, Bovine/genetics , Ileum
2.
Gastroenterology ; 162(7):S-886-S-887, 2022.
Article in English | EMBASE | ID: covidwho-1967382

ABSTRACT

Introduction: Coronavirus Disease 2019 (COVID-19) is an ongoing public health crisis that has sickened or precipitated death in millions. The etiologic agent of COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), infects the intestinal epithelium and can persist long after the respiratory infection has cleared. We previously observed that intestinal SARS-CoV-2 infection levels varied by individual donors and did not correlate positively with ACE2, the cognate SARS-CoV-2 receptor. Therefore we aimed to delineate host factors that influence viral infection in the intestine. Methods: Published dataset GSE75214 was downloaded and expression levels of select genes were querried. Primary human ileal spheroids (enteroids), derived from healthy donors and patients with Crohn's disease (CD), were grown on 2D transwells until confluent. Cells were differentiated for 3d before infection with a modified vesicular stomatitis virus expressing the SARS-CoV-2 spike protein (VSV-SARS-CoV-2) and GFP for 1h at a multiplicity of infection of ~0.5. Cells were harvested pre-infection and 24h after infection and expression of select genes was performed by qRT-PCR. Expression data were fit to a linear regression model to predict viral RNA levels. Results: Small intestine biopsy samples from CD patients demonstrated a reduction in ACE and an increase in CTSB and CTSL expression during active inflammation compared to healthy controls. Viral RNA expression did not correlate with ACE2 expression in CD enteroids. A subset of CD enteroids exhibited enhanced protease expression (TMPRSS2, TMPRSS4, CTSL), each of which correlated with higher viral RNA levels (P=0.04, P=0.002, P=0.006, respectively). Expression of these proteases was higher in the pre-infection for the sample subset. Principle component analysis of uninfected expression data demonstrated these samples clustered separately from the others, with the difference driven by TMPRSS2, TMPRSS4, and CTSL. Modeling viral RNA levels based on gene expression revealed expression levels of these proteases are a predictive expression signature. Conclusions: Host protease expression can predict SARS-CoV-2 infection and represent potential therapeutic targets for COVID-19. This is consistent with the recent report showing that cathepsin inhibition reduces SARS-CoV-2 spike-mediated syncytia formation. High expression of these proteases in the intestine may also be a novel biomarker for the risk of intestinal complications associated with COVID-19.(Figure Presented)RNA data from dataset GSE75214 demonstrating reduced ACE2 and increased CTSB and CTSL in patients with Crohn's disease during active inflammation compared to healthy controls. (Figure Presented) Enteroids from healthy control donors and patients with Crohn's disease were grown in 2D transwells and expression of indicated genes was assessed in pre-infection (A) and after infection with VSV-SARS-CoV-2 (B)

SELECTION OF CITATIONS
SEARCH DETAIL